a2 United States Patent

Forlenza et al.

US009244756B1

US 9,244,756 B1
Jan. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

LOGIC-BUILT-IN-SELF-TEST DIAGNOSTIC
METHOD FOR ROOT CAUSE
IDENTIFICATION

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Donato O. Forlenza, Hopewell Junction,
NY (US); Orazio P. Forlenza, Hopewell
Junction, NY (US); Bryan J. Robbins,
Beavercreek, OH (US)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/446,516

Filed: Jul. 30, 2014

Int. Cl1.

GO6r 1107 (2006.01)

GOIR 3173177 (2006.01)

GOIR 313187 (2006.01)

GOIR 3173185 (2006.01)

GO6F 11/27 (2006.01)

GOIR 31/3183 (2006.01)

U.S. CL

CPC ... GO6F 11/079 (2013.01); GOIR 313177

(2013.01); GOIR 31/3185 (2013.01); GOIR
31/3187 (2013.01); GOIR 31/318547 (2013.01);
GOIR 31/318371 (2013.01); GOIR 31/318533
(2013.01); GOIR 31/318536 (2013.01); GOGF
11/27(2013.01)
Field of Classification Search

CPC ... GOG6F 11/27; GO6F 11/079; GO1R 31/3187;
GOI1R 31/318371; GO1R 31/3185; GOIR
31/3177; GO1R 31/318533; GOIR 31/318536;
GO1R 31/318547
USPCccccveeee 714/726, 727,729,731, 732, 733

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,513,418 A 4/1985 Bardell, Jr. et al.
6,125,465 A 9/2000 McNamara et al.
6,442,723 Bl 8/2002 Koprowski et al.
6,654,920 B1 11/2003 Hetherington et al.
(Continued)
OTHER PUBLICATIONS

Querbach, B.; Khanna, R.; Blankenbeckler, D.; Yulan Zhang; Ander-
son, R.T.; Ellis, D.G.; Schoenborn, Z.T.; Deyati, S.; Chiang, P, “A
reusable BIST with software assisted repair technology for improved
memory and IO debug, validation and test time,” Test Conference
(ITC), 2014 IEEE International , vol., no., pp. 1,10, Oct. 20-23,
2014.*

(Continued)

Primary Examiner — Cynthia Britt
(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
Margaret McNamara

(57) ABSTRACT

A method of performing root cause identification for a failure
on an integrated circuit with a logic built-in self-test (LBIST)
system and an LBIST system to perform root cause identifi-
cation are described. The method includes completing one or
more cycles of test with the LBIST system, each of the one or
more cycles implementing one or more macros associated
with each of one or more channel scan paths. The method also
includes identifying, using a processor, a failing cycle among
the one or more cycles of test, identifying a failing channel
scan path among the one or more channel scan paths associ-
ated with the failing cycle, and identifying the one or more
macros associated with the failing channel scan path. The
method further includes iteratively checking each of the one
or more macros associated with the failing channel scan path
to perform the root cause identification.

9 Claims, 3 Drawing Sheets

—>| complete one or more cycles
3 e 1o
identify failing cycle | 220

| identify failing STUMPS channel |530

240

‘ identify macros associated with failing STUMPS channel |

(250

| apply clock-off for macros associated with failing STUMPS channel |

—{ iteratively check each macro associated with failing STUMPS channel |

C 260

US 9,244,756 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,807,645 B2* 10/2004 Angelottietal. 714/732
6,901,546 B2 5/2005 Chuetal.
7,558,996 B2* 7/2009 Kiryuccciiiiiiniine 714/726
7,856,582 B2* 12/2010 Cervantes etal. 714/732
2004/0230882 Al 11/2004 Huott et al.
2007/0273401 Al 11/2007 Kiryu
2009/0089636 Al* 4/2009 Fernsleretal. ... 714/728
2009/0292963 Al 11/2009 Gass etal.
2009/0307548 Al 12/2009 Forlenza et al.
2010/0262879 Al 10/2010 Floyd et al.

OTHER PUBLICATIONS
Prabhu, S.; Acharya, V.V.; Bagri, S.; Hsiao, M.S., “A diagnosis-
friendly LBIST architecture with property checking,” Test Confer-

ence (ITC), 2014 IEEE International , vol., no., pp. 1,9, Oct. 20-23,
2014.*

Lai et al., “Hardware Efficient LBIST With Complementary
Weights”, Proceedings of the 2005 International Conference on
Computer Design, 2005, pp. 1-3.

Meehl etal., “LBIST/ATPG technologies for on-demand digital logic
testing in Automotive Circuits”, IEEE 21st Asian Test Symposium,
2012, 1 page.

List of IBM Patents or Patent Applications Treated as Related,;
(Appendix P), Filed Oct. 1, 2014, 2 pages.

Donato O. Forlenza et al., “Logic-Built-In-Self-Test Diagnostic
Method for Root Cause Identification”, U.S. Appl. No. 14/502,455,
filed Sep. 30, 2014.

* cited by examiner

US 9,244,756 B1

Sheet 1 of 3

Jan. 26, 2016

U.S. Patent

9]

T 'Ol

OvT ¥SIN \
[A4 N4
0Tt u-sTT o1t T-STT _
omew [€]puuey onew [$ouuepy| M J3||0J1u0d
SAINNLS| 1
SAINNLS ! 1S197
T 10T
0¢T
5ddd

scl — wm_mwv
Jossasoud :
Aowaw
AN
(ssTasnyae) | [EGT
lossanoud
0ST
bolAsp AJowaw
T Gl
191591

ZZT S|eusis o0 “TZT S|eusis [0J3U0d

US 9,244,756 B1

Sheet 2 of 3

Jan. 26, 2016

U.S. Patent

¢ 'Ol
ommxw

|]ouueYD SAIAINLS Suljle) Yum paleldosSe 0Jdew Yoea 32ayd AjaAlelall

[2UUBYD SHINNLS Suljie) Ylim paleidosse soidew Joj JJ0-3202 Ajdde

057

[puUBYD SHININLS Sul|le) yum paleldosse soddew Ajinuapl

ovz—'

0€Z | 19uueyd SHINNLS 3uljie} Ajizuapl

0Z¢ | °|2Ad 3uljiey Ayiauapl

N1

0] 4
(| S9]2A2 aJow Jo duo 33|dwod

US 9,244,756 B1

Sheet 3 of 3

Jan. 26, 2016

U.S. Patent

papaau se sisAjeue 1IN2J1d wioad

05e =

€ Dl
Zpau sosoe
HO-32002 ||E

ou
orve

o€ | APNIs 01 soudoew 4o 3s1| O} OUoBW ppe

(P
soA
0cE éPOAISSqO |18y
A% ou
01¢
09¢ < _| onew auo 9|qeua

f

0S¢
™ [PUUBYD SJIAINLS Suljle} Ylm paleidosse sosdew 404 1Jo-320)0 Ajdde

US 9,244,756 B1

1
LOGIC-BUILT-IN-SELF-TEST DIAGNOSTIC
METHOD FOR ROOT CAUSE
IDENTIFICATION

BACKGROUND

The present invention relates to logic-built-in-self-test
(LBIST) of macros, and more specifically, to an LBIST diag-
nostic method for root cause identification.

A macro in an integrated circuit, for example, is an instruc-
tion sequence that implements a logic circuit (e.g., AND gate)
when executed. LBIST includes hardware elements, software
elements, or a combination of the two built into an integrated
circuit (IC) to allow self-tests of the macros. The LBIST may
use an architecture that is referred to as self-test using MISR
and parallel SRSG (STUMPS) architecture, where MISR
refers to a multiple input signature register, and SRSG refers
to a shift register sequence generator. The STUMPS architec-
ture includes different channel scan paths (referred to as
“channels” or “STUMPS channels”) that are each formed
between a pseudo-random pattern generator (PRPG) (e.g., a
linear feedback shift register (LFSR)) and the MISR, which is
a state machine. Generally in a test (in a scan mode), an
LBIST controller loads the multiple channel scan paths
(STUMPS channels) with respective test patterns, and the IC
is operated for one or more clock cycles. That is, the STUMPS
channels apply the pseudo-random test data to the system
logic or the macros from the PRPG. The operation changes
the states at nodes of the circuit, and the state changes affect
what is stored in one or more scan channel registers in the
MISR. When the IC is returned to scan mode, the data in the
MISR is shifted out and evaluated by comparing the obtained
data with expected data.

SUMMARY

According to one embodiment, a method of performing
root cause identification for a failure on an integrated circuit
with a logic built-in self-test (LBIST) system includes com-
pleting one or more cycles of test with the LBIST system,
each of the one or more cycles implementing one or more
macros associated with each of one or more channel scan
paths; identifying, using a processor, a failing cycle among
the one or more cycles of test; identifying a failing channel
scan path among the one or more channel scan paths associ-
ated with the failing cycle; identifying the one or more macros
associated with the failing channel scan path; and iteratively
checking each of the one or more macros associated with the
failing channel scan path to perform the root cause identifi-
cation.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 is a simplified block diagram of an IC including an
LBIST system according to an exemplary embodiment;

FIG. 2 is a process flow of a method of root cause identi-
fication of a failure in an IC during implementation of LBIST
according to an exemplary embodiment; and

FIG. 3 is a process flow of a method of checking each
macro associated with a failing STUMPS channel according
to an exemplary embodiment.

DETAILED DESCRIPTION

As noted above, a LBIST using STUMPS architecture may
be used for self-testing within an IC. A persistent (repeatable)
failure may be identified through the current testing process.
However, an intermittent failure presents a challenge to cur-
rent LBIST procedures. That is, certain failure mechanisms
become a moving target that may be difficult to identify with
current diagnostic techniques. Embodiments of the systems
and method discussed herein relate to an LBIST diagnostic
procedure that facilitates root cause identification over a
broad range of failure mechanisms.

FIG. 11is a simplified block diagram of an IC 100 including
an LBIST system according to an exemplary embodiment.
The LBIST system is implemented by an LBIST macro for
testing the macros 110 (system logic) of the IC 100. Each of
the channel scan paths or STUMPS channels 115-1 through
115-» includes one or more elements coupled to a macro 110
or system logic component being tested. Thus, although one
macro 110 is shown in correspondence to each STUMPS
channel 115, more than one macro 110 may be associated
with a given STUMPS channel 115. The STUMPS channels
115 receive pseudo-random data via the pseudo-random pat-
tern generator (PRPG) 130 and provide their output to the
multiple input signature register (MISR) 140. An LBIST con-
troller 120 provides control signals 121 and clock signals 122
to control the testing of the macros 110. An off-chip tester 152
including one or more processors 153 and one or more
memory devices (150) may control operation of the LBIST
controller 120, and the tester 152 (or an off-line diagnostic
system coupled to the tester 152) may analyze results of test
cycles to perform root cause identification, as discussed
herein. In alternate embodiments, an on-chip processor 101
(e.g., a component of the design for test (DFT) macros) may
initiate LBIST controller 120 actions and analyze results to
perform the root cause identification discussed herein (based
on instructions stored in accessible memory on the IC 100).
The embodiments of root cause identification discussed
herein are not limited by where (on or off IC 100) the failure
analysis and root cause identification is performed. Addi-
tional details of the LBIST system such as the spreader,
compressor, are known and are not detailed herein. Embodi-
ments of the root cause identification detailed herein are
performed with a processor (153, 101) controlling the LBIST
controller 120 that includes one or more memory devices 123
and one or more processors 125. Once the LBIST controller
120 has completed one or more test cycles, the oft-chip tester
152 or on-chip processor 101 compares the MISR 140 data
(output by the STUMPS channels 115-1 through 115-% based
on operations of the macros 110 for each clock cycle) with
expected data and performs processes described with refer-
ence to FIG. 2 below to identify the root cause of a fault.
Storage device 150 (e.g., a database), shown as part of the
tester 152, includes a clock-off latch list 155 for the macros
110, which is discussed below. This clock-off latch list 155,
like the alternate processor 101 to perform root cause identi-
fication, may instead be stored on the IC 100 itself.

US 9,244,756 B1

3

FIG. 2 is a process flow of a method of root cause identi-
fication of a failure in an IC 100 resulting from implementa-
tion of the LBIST system according to an exemplary embodi-
ment. At block 210, completing one or more cycles of
operation includes operating all the macros 110 using
pseudo-random data. Identifying a failing cycle, at block 220,
includes identifying the first failing cycle when the process is
first implemented. That is, typically, some number (e.g.,
4000-1,000,000) of cycles are completed and then the MISR
140 data is compared with the expected data to determine
whether a failure occurred in at least one cycle. The first cycle
that includes a failure (unexpected MISR output) is identified
as a failing cycle at block 220. At block 230, identifying the
failing STUMPS channel 115 of the failing cycle leads to
identifying macros 110 associated with the failing STUMPS
channel 115 at block 240. When the macros 110 associated
with the failing STUMPS channel 115 are identified (at block
240), a clock-off is applied to the macros 110 associated with
the failing STUMPS channel 115 at block 250. This means
that the macros 110 are disabled or prevented from executing.
The clock-off latch list 155 may be stored off-chip (e.g.,
storage device 150) or on-chip (on IC 100). At block 260,
iteratively checking each macro 110 associated with the fail-
ing STUMPS channel 115 facilitates identification of the
failing macro 110 (the root cause identification). This itera-
tive process is detailed below with reference to FIG. 3. The
processes shown in FIG. 2 may, themselves, be iterative. That
is, operation may return to block 210 from block 260 to
complete more cycles of operation of the LBIST process or
perform root cause identification for another cycle with a
failure in the initial set of test cycles, as needed.

FIG. 3 is a process flow of a method of checking each
macro 110 associated with a failing STUMPS channel 115.
The processes shown in FIG. 3 detail block 260 in FIG. 2,
which is implemented after applying a clock-off to all the
macros 110 associated with a failing STUMPS channel 115
(block 250, FIG. 2). At block 310, enabling one macro 110
(among the macros 110 that are clocked off) facilitates
executing the cycle of testing to determine if a fail was
observed, at block 320. That is, enabling refers to making it
possible to execute the macro 110 and observe whether a fail
(unexpected output) occurred. If a fail was not observed, the
macro 110 that was enabled at block 310 is not a failing macro
110, and the process returns to enabling another macro 110 at
block 310 (the non-failing enabled macro 110 is left enabled).
If a fail was observed at block 320 (i.e., enabling the one
macro 110 results in a failure), then the processes include
adding the enabled macro 110 to the list of macros 110 to
study at block 330. The failing enabled macro 110 is disabled
again to facilitate checking the remaining macros 110. At
block 340, a determination is made about whether all of the
clocked-oft macros 110 were tried (enabled and re-tested).
When all of the clocked-off macros 110 (clocked off at block
250, FIG. 2) have not been enabled and re-tested (block 310),
the process continues (returns to block 310). When all the
clocked-off macros 110 have been enabled and re-tested
(based on the check at block 340), then performing circuit
analysis as needed, at block 350, pertains to the macros 110
that were added to the list of macros 110 to study at block 330.
The circuit analysis at block 350 is performed to identify the
failing latch of the failing macro 110. According to one
embodiment, the identification of the failing latch may follow
an iterative process of enabling one latch at a time, like the
process described with reference to FIG. 3 to enable one
macro 110 at a time.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Technical effects and benefits include the capability of
identifying a root cause (at a macro level or latch level) of a
failure (unexpected output) during testing of an integrated
circuit.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion. The computer readable storage medium can be a tan-
gible device that canretain and store instructions for use by an
instruction execution device.

The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device, a
magnetic storage device, an optical storage device, an elec-
tromagnetic storage device, a semiconductor storage device,
or any suitable combination of the foregoing. A non-exhaus-
tive list of more specific examples of the computer readable
storage medium includes the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a static random
access memory (SRAM), a portable compact disc read-only
memory (CD-ROM), a digital versatile disk (DVD), a
memory stick, a floppy disk, a mechanically encoded device
such as punch-cards or raised structures in a groove having
instructions recorded thereon, and any suitable combination
of the foregoing. A computer readable storage medium, as
used herein, is not to be construed as being transitory signals
per se, such as radio waves or other freely propagating elec-
tromagnetic waves, electromagnetic waves propagating
through a waveguide or other transmission media (e.g., light
pulses passing through a fiber-optic cable), or electrical sig-
nals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,

US 9,244,756 B1

5

through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). In some alternative implementations, the functions
noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-

10

15

20

25

30

35

40

45

50

55

60

65

6

prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one more other features, integers, steps, operations, ele-
ment components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A method of performing root cause identification for a
failure on an integrated circuit with a logic built-in self-test
(LBIST) system, the method comprising:

completing one or more cycles of test with the LBIST

system, each of the one or more cycles enabling one or
more macros associated with each of one or more chan-
nel scan paths;

identifying, using a processor, a failing cycle among the

one or more cycles of test;

identifying a failing channel scan path among the one or

more channel scan paths associated with the failing
cycle;

identifying the one or more macros associated with the

failing channel scan path; and

iteratively checking each of the one or more macros asso-

ciated with the failing channel scan path to perform the
root cause identification.

2. The method according to claim 1, wherein the enabling
the one or more macros associated with each of the one or
more channel scan paths includes executing logic on the one
or more macros of each of the one or more channel scan paths
with data from a pseudo-random pattern generator.

3. The method according to claim 1, wherein the identify-
ing the failing cycle and the identifying the failing channel
scan path includes comparing outputs of the one or more
macros of each of the one or more channel scan paths, output
to a multiple input signature register (MISR), with expected
values.

4. The method according to claim 1, wherein the iteratively
checking each of the one or more macros associated with the
failing channel scan path includes applying a clock-oft signal
to all of the one or more macros associated with the failing
channel scan path.

5. The method according to claim 4, wherein the iteratively
checking each of the one or more macros associated with the
failing channel scan path includes iteratively enabling one of
the one or more macros associated with the failing channel
scan path at each iteration.

6. The method according to claim 5, wherein the iteratively
enabling one of the one or more macros associated with the
failing channel scan path at each iteration includes executing
the one of the one or more macros associated with the failing
channel scan path enabled at each iteration to determine
whether the failure is resolved or not resolved.

US 9,244,756 B1
7

7. The method according to claim 6, further comprising
identifying the one of the one or more macros associated with
the failing channel scan path as a non-failing macro when the
failure is resolved.

8. The method according to claim 6, further comprising 5
identifying the one of the one or more macros associated with
the failing channel scan path as a failing macro when the
failure is not resolved.

9. The method according to claim 1, further comprising
performing circuit analysis on each macro, of the one or more 10
macros associated with the failing channel scan path, identi-
fied as a failing macro to identify one or more failing latches.

#* #* #* #* #*

